Researcher Database

YAENO, Takashi

FacultyGraduate School of Agriculture Department of Food Production Science
PositionAssociate Professor
Last Updated :2020/07/04

Researcher Profile and Settings

Profile and Settings

Name

  • Name

    YAENO, Takashi

Profile & Settings

  • アバター画像URI

    https://researchmap.jp/yaeno/avatar.JPG

Education, Etc.

Education

  • 2004, Kyushu University
  • 2004, Kyushu University, Graduate School, Division of Natural Science
  • 2000, Kyushu University
  • 2000, Kyushu University, Graduate School, Division of Natural Science
  • 1998, Kyushu University, School of Sciences
  • 1998, Kyushu University, Faculty of Science

その他基本情報

Association Memberships

  • THE PHYTOPATHOLOGICAL SOCIETY OF JAPAN

Academic & Professional Experience

  • 2016/04 - Today, Graduate School of Agriculture, Ehime University
  • 2013/04 - 2016/03, Faculty of Agriculture, Ehime University
  • 2008/04 - 2013/03, Researcher, Plant Science Center, Plant Immunity Research Group, RIKEN(The Institute of Physical and Chemical Research)
  • 2004 - 2008

Research Activities

Research Areas, Etc.

Research Areas

  • Life sciences, Plants: molecular biology and physiology

Research Interests

  • barley
  • powdery mildew

Book, papers, etc

Published Papers

  • 2020/01, [Refereed], 10.3390/pathogens9010045
  • 2020, [Refereed], 0031-949X, 10.1094/PHYTO-12-18-0478-FI
  • 2019/09, [Refereed], 1340-3540, 10.1016/j.myc.2019.06.006
  • Conferring virus resistance in tomato by independent RNA silencing of three tomato homologs of Arabidopsis TOM1., Ali ME, Ishii Y, Taniguchi JI, Waliullah S, Kobayashi K, Yaeno T, Yamaoka N, Nishiguchi M, Archives of virology, Archives of virology, 2018/05, [Refereed], 0304-8608, 10.1007/s00705-018-3747-4
  • 2017/05, [Refereed], 1345-2630, 10.1007/s10327-017-0712-0
  • Inducible expression of magnesium protoporphyrin chelatase subunit I (CHLI)-amiRNA provides insights into cucumber mosaic virus Y satellite RNA-induced chlorosis symptoms., Bhor SA, Tateda C, Mochizuki T, Sekine KT, Yaeno T, Yamaoka N, Nishiguchi M, Kobayashi K, Virusdisease, Virusdisease, 2017/03, [Refereed], 2347-3584, 10.1007/s13337-017-0360-1
  • Inducible transgenic tobacco system to study the mechanisms underlying chlorosis mediated by the silencing of chloroplast heat shock protein 90., Bhor SA, Tateda C, Mochizuki T, Sekine KT, Yaeno T, Yamaoka N, Nishiguchi M, Kobayashi K, Virusdisease, Virusdisease, 2017/03, [Refereed], 2347-3584, 10.1007/s13337-017-0361-0
  • 2016/12, [Refereed], 0920-8569, 10.1007/s11262-016-1376-0
  • 2016/10, [Refereed], 0027-8424, 10.1073/pnas.1612947113
  • 2016/09, [Refereed], 1345-2630, 10.1007/s10327-016-0673-8
  • 2016/07, [Refereed], 0971-7811, 10.1007/s13562-015-0334-6
  • 2016/02, [Refereed], 1467-7644, 10.1111/pbi.12429
  • Simple and Quantitative Detection of Apple latent spherical virus Vector by a Spot Hybridization, Sachin Ashok Bhor, Md. Shamim Akhter, Takashi Yaeno, Naoto Yamaoka, Masamichi Nishiguchi, Masanori Kaido, Kappei Kobayashi, International Journal of Modern Botany, International Journal of Modern Botany, 2016, [Refereed]
  • 2016/01, [Refereed], 1345-2630, 10.1007/s10327-015-0630-y
  • 2016/01, [Refereed], 1345-2630, 10.1007/s10327-015-0618-7
  • *WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in <i>Nicotiana benthamiana</i>., Adachi, H, Nakano, T, Miyagawa, N, Ishihama, N, Yoshioka, M, Katou, Y, Yaeno, T, Shirasu, K, Yoshioka, H, The Plant Cell, The Plant Cell, 2015/10, [Refereed], 1532-298X
  • 2015/09, [Refereed], 1040-4651, 10.1105/tpc.15.00213
  • 2015/07, [Refereed], 1345-2630, 10.1007/s10327-015-0600-4
  • 2015/01, [Refereed], 1345-2630, 10.1007/s10327-014-0564-9
  • 2015/01, [Refereed], 1467-7644, 10.1111/pbi.12239
  • 2014/10, [Refereed], 0885-5765, 10.1016/j.pmpp.2014.08.005
  • 2013/07, [Refereed], 2041-1723, 10.1038/ncomms3215
  • The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates., Yaeno T, Shirasu K, Plant Signaling & Behavior, Plant Signaling & Behavior, 2013/04, [Refereed], 1559-2316, 10.4161/psb.23865
  • Plant U-box E3 ubiquitin ligases, YAENO Takashi, SHIRASU Ken, Seikagaku. The Journal of Japanese Biochemical Society, Seikagaku. The Journal of Japanese Biochemical Society, 2012/06, 0037-1017
  • 2011/11, [Refereed], 0027-8424, 10.1073/pnas.1108434108
  • 2011/08, [Refereed], 0027-8424, 10.1073/pnas.1106002108
  • 2008/11, [Refereed], 0006-291X, 10.1016/j.bbrc.2008.08.157
  • 2008/10, [Refereed], 0032-0889, 10.1104/pp.108.124529
  • 2008/05, [Refereed], 0006-291X, 10.1016/j.bbrc.2008.03.083
  • 2007/12, [Refereed], 1040-4651, 10.1105/tpc.107.055624
  • Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturases, Asanori Yara, Takashi Yaeno, Morifumi Hasegawa, Hideharu Seto, Jean-Luc Montillet, Kensuke Kusumi, Shigetni Seo, Koh Iba, PLANT AND CELL PHYSIOLOGY, PLANT AND CELL PHYSIOLOGY, 2007/09, [Refereed], 0032-0781, 10.1093/pcp/pcm107
  • 2006/12, [Refereed], 0031-9317, 10.1111/j.1399-3054.2006.00786.x
  • 2006/08, [Refereed], 0032-0781, 10.1093/pcp/pcj074
  • 2006/03, [Refereed], 0032-0781, 10.1093/pcp/pci253
  • 2006, [Refereed]
  • 2004/12, [Refereed], 0960-7412, 10.1111/j.1365-313X.2004.02260.x

Misc

  • トランスジェニックモデル植物を用いた植物ウイルス病発症機構の解析, 寺田忍, BHOR Sachin Ashok, 望月知史, 舘田知佳, 関根健太郎, 田中啓介, 坂本光, 田谷萌香, ISLAM Shaikhul, 中村瑞生, 三好沙季, 八丈野孝, 八丈野孝, 八丈野孝, 八丈野孝, 小林括平, 小林括平, 小林括平, 小林括平, 植物ウイルス病研究会レポート, 植物ウイルス病研究会レポート, 13, 61‐75, 2018/03, 0919-2956, http://jglobal.jst.go.jp/public/201802278569520340
  • カリフラワーモザイクウイルスTav遺伝子発現シロイヌナズナにおける細胞自律的な成長抑制, 寺田忍, 田中啓介, 坂本光, 関根健太郎, 八丈野孝, 山岡直人, 小林括平, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2018, 120, 2018/03, http://jglobal.jst.go.jp/public/201802239121521620
  • エンドウうどんこ病菌の人工培養, 小笠原翼, 田中栄爾, 小林括平, 八丈野孝, 山岡直人, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2018, 61, 2018/03, http://jglobal.jst.go.jp/public/201802251872016429
  • オオムギうどんこ病菌エフェクターの病原性機能および細胞内局在解析, 八丈野孝, 武井博, 井上智絵, 和原未季, 中村篤史, 岩井さくら, 清水茜, 長野眞衣, 戸田寛隆, 小林括平, 中神弘史, 山岡直人, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2018, 61, 2018/03, http://jglobal.jst.go.jp/public/201802255339200707
  • mlo変異によるオオムギうどんこ病菌抵抗性の解析, 長野眞依, 和原未季, 井上智絵, 久野裕, 小林括平, 山岡直人, 中神弘史, 八丈野孝, 日本植物病理学会報, 日本植物病理学会報, 84, 1, 29(J‐STAGE), 2018, 0031-9473, http://jglobal.jst.go.jp/public/201802241361612780
  • オオムギうどんこ病菌エフェクタ―APEC1の機能解析, 井上智絵, 武井博, 香口智宏, 小林括平, 山岡直人, 中神弘史, 八丈野孝, 日本植物病理学会報, 日本植物病理学会報, 84, 1, 29(J‐STAGE), 2018, 0031-9473, http://jglobal.jst.go.jp/public/201802242729545692
  • 255, 257, 2018, http://id.ndl.go.jp/bib/030148498
  • 誘導型カリフラワーモザイクウイルスTav遺伝子発現シロイヌナズナが示す成長抑制における遺伝子発現の網羅的解析, 寺田忍, BOHOR S. A, 田中啓介, 坂本光, 関根健太郎, 八丈野孝, 山岡直人, 西口正通, 小林括平, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2017, 126, 2017/04, http://jglobal.jst.go.jp/public/201702286291868655
  • 14, 4, 1171, 1172, 2016/04, 1467-7644, 10.1111/pbi.12546
  • オオムギうどんこ病菌の付着器分泌型エフェクター候補の解析, 香口智宏, 和原未季, 武井博, 菅井維之, 野村有子, 小林括平, 西口正通, 山岡直人, 中神弘史, 八丈野孝, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2016, 62, 2016/03, http://jglobal.jst.go.jp/public/201602204487762352
  • 薬剤誘導型カリフラワーモザイクウイルスTav遺伝子導入シロイヌナズナは誘導薬剤依存的に葉の黄化および成長抑制を示す, 寺田忍, BHOR Sachin Ashok, 関根健太郎, 八丈野孝, 山岡直人, 西口正通, 小林括平, 日本植物病理学会報, 日本植物病理学会報, 82, 1, 64(J‐STAGE), 2016, 0031-9473, http://jglobal.jst.go.jp/public/201802214003447782
  • オオムギうどんこ病菌の付着器分泌型エフェクターの同定, 香口智宏, 菅井維之, 野村有子, 和原未季, 武井博, 小林括平, 西口正通, 山岡直人, 中神弘史, 八丈野孝, 日本植物病理学会報, 日本植物病理学会報, 82, 1, 54(J‐STAGE), 2016, 0031-9473, http://jglobal.jst.go.jp/public/201802242405649362
  • Studies to unlock the molecular mechanisms of crop disease in new ways inspired by the past, Yaeno Takashi, Abstracts of Meeting of the CSSJ, CROP SCIENCE SOCIETY OF JAPAN, Abstracts of Meeting of the CSSJ, 243, 0, 235, 235, 2016, 10.14829/jcsproc.243.0_235, http://jglobal.jst.go.jp/public/201702237002270059
  • Analysis of Pathogenicity of a New Race of Blumeria graminis f. sp. hordei, 香口智宏, 和原未季, 菅井維之, 山岡直人, 八丈野孝, 愛媛大学農学部紀要, 愛媛大学農学部紀要, 60, 1, 6, 2015/09, 0424-6829, http://id.ndl.go.jp/bib/027100771
  • うどんこ病菌の付着器分泌タンパク質とエフェクターの機能解析, 八丈野孝, 香口智宏, 菅井維之, 和原未季, 野村有子, 佐藤繭子, 若崎眞由美, 久野裕, 片岡創, 久保田直道, 小林括平, 西口正通, 豊岡公徳, 中神弘史, 山岡直人, 日本植物病理学会植物感染生理談話会論文集, 日本植物病理学会植物感染生理談話会論文集, 50, 33‐39, 2015/08, 1345-8086, http://jglobal.jst.go.jp/public/201602219331296278
  • 葉緑体タンパク質THF1の新規相互作用因子の探索, 杉若侑治, 田島薫, 菅沼裕介, 八丈野孝, 山岡直人, 西口正通, 小林括平, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2015, 151, 2015/03, http://jglobal.jst.go.jp/public/201502214921805356
  • 絶対寄生菌の人工培養:オオムギうどんこ病菌の人工培養, 山岡直人, 田中栄爾, 八丈野孝, 小林括平, 西口正通, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2015, 47, 2015/03, http://jglobal.jst.go.jp/public/201502240913663195
  • オオムギうどんこ病菌Avrエフェクターの分泌時期の解析, 香口智宏, 片岡創, 久保田直道, 小林括平, 西口正通, 山岡直人, 八丈野孝, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2015, 47, 2015/03, http://jglobal.jst.go.jp/public/201502244757644970
  • イネRNAサイレンシング関与遺伝子OsSGS3の機能解析, 田中徹, WAGH S. G, ALAM M. M, CHEN H, 宮尾安藝雄, 廣近洋彦, 小林括平, 八丈野孝, 山岡直人, 西口正通, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2015, 134, 2015/03, http://jglobal.jst.go.jp/public/201502251793572630
  • カラスウリから分離されたタバモウイルスの塩基配列:Kyuri green mottle mosaic virusの分離株群の2ウイルス種への可能性, 田中徹, 吉田崇彦, 月原周将, 長田龍太郎, 櫛間義幸, 小林括平, 八丈野孝, 山岡直人, 西口正通, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2015, 130, 2015/03, http://jglobal.jst.go.jp/public/201502257687214439
  • 抵抗性品種を用いたオオムギうどんこ病菌エフェクターの分泌時期の解析, 香口智宏, 小林括平, 西口正通, 山岡直人, 八丈野孝, 日本植物病理学会報, 日本植物病理学会報, 81, 1, 71, 2015, 0031-9473, http://jglobal.jst.go.jp/public/201802268323893208
  • オオムギうどんこ病菌の付着器から分泌されるエフェクタータンパク質の同定, 八丈野孝, 菅井維之, 野村有子, 佐藤繭子, 若崎真由美, 香口智宏, 小林括平, 西口正通, 豊岡公徳, 中神弘史, 山岡直人, 日本植物病理学会報, 日本植物病理学会報, 81, 1, 71, 2015, 0031-9473, http://jglobal.jst.go.jp/public/201802269363965037
  • 104, 11, 85, 85, 2014/11, 0031-949X
  • オオムギうどんこ病菌の感染過程におけるエフェクターの分泌時期の解析, 香口智宏, 小林括平, 西口正通, 山岡直人, 八丈野孝, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2014, 74, 2014/05, http://jglobal.jst.go.jp/public/201402229476305844
  • N′抵抗性はトウガラシ微斑ウイルスに対して永続的である, 出原健吾, 関根健太郎, 八丈野孝, 山岡直人, 西口正通, 小林括平, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2014, 137, 2014/05, http://jglobal.jst.go.jp/public/201402267907618216
  • MAPK‐WRKY経路は抵抗性遺伝子に依存したNbRBOHBの転写活性化に関与する, 安達広明, 石濱伸明, 中野孝明, 宮川典子, 吉岡美樹, 八丈野孝, 白須賢, 吉岡博文, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2014, 87, 2014/05, http://jglobal.jst.go.jp/public/201402275396446791
  • エフェクター認識後のNbRBOHBプロモーター活性化に複数のWRKY型転写因子が関与する, 安達広明, 石濱伸明, 中野孝明, 宮川典子, 吉岡美樹, 八丈野孝, 白須賢, 吉岡博文, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 55th, 171, 2014/03, http://jglobal.jst.go.jp/public/201402264471295018
  • トウガラシ微斑ウイルス外被タンパク質変異株におけるN′抵抗性を回避するために必須な変異の同定, 出原健吾, 関根健太郎, 八丈野孝, 山岡直人, 西口正通, 小林括平, 日本植物病理学会報, 日本植物病理学会報, 80, 1, 34, 2014/02, 0031-9473, http://jglobal.jst.go.jp/public/201402220772363577
  • オオムギうどんこ病菌(Blumeria graminis)の感染過程における第一発芽管の役割, 菅井維之, 新崎裕樹, 八丈野孝, 小林括平, 西口正通, 山岡直人, 日本植物病理学会報, 日本植物病理学会報, 80, 1, 46, 2014/02, 0031-9473, http://jglobal.jst.go.jp/public/201402260638930882
  • オオムギうどんこ病菌エフェクターの分泌及び宿主細胞侵入機構の解析, 香口智宏, 菅井維之, 中下香, 久野裕, 小林括平, 西口正通, 山岡直人, 八丈野孝, 日本植物病理学会報, 日本植物病理学会報, 80, 1, 46, 2014/02, 0031-9473, http://jglobal.jst.go.jp/public/201402264322170423
  • 複数のWRKY型転写因子は抵抗性遺伝子に依存した活性酸素生産に関与する, 安達広明, 石濱伸明, 中野孝明, 宮川典子, 吉岡美樹, 八丈野孝, 白須賢, 吉岡博文, 日本植物病理学会報, 日本植物病理学会報, 80, 1, 28, 2014/02, 0031-9473, http://jglobal.jst.go.jp/public/201402276176871820
  • トマトの内在遺伝子のサイレンシングによる高温耐性の付与と接ぎ木による移行, 中村真也, 瓦朋子, 本藤加奈, 小林括平, 八丈野孝, 山岡直人, 西口正通, 日本分子生物学会年会プログラム・要旨集(Web), 日本分子生物学会年会プログラム・要旨集(Web), 37th, 2P-0888 (WEB ONLY), 2014, http://jglobal.jst.go.jp/public/201502253445570820
  • H<sup>+</sup>‐ATPase局在化因子PATROL1による気孔運動と成長制御, 橋本(杉本)美海, 桧垣匠, 秋田佳恵, 八丈野孝, 祢宜淳太郎, 白須賢, 馳澤盛一郎, 射場厚, 日本植物学会大会研究発表記録, 日本植物学会大会研究発表記録, 77th, 164, 2013/08, http://jglobal.jst.go.jp/public/201302275573597757
  • ジャガイモ疫病菌エフェクターAVR3aの宿主細胞内における免疫抑制機構, 八丈野孝, 瀧澤香, 白須賢, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2013, 45, 2013/03, http://jglobal.jst.go.jp/public/201302228674907791
  • WRKY型転写因子は病害応答性MAPKの下流で誘導されるROS生産の重要な制御因子である, 安達広明, 石濱伸明, 吉岡美樹, 加藤有里, 八丈野孝, 白須賢, 吉岡博文, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2013, 49, 2013/03, http://jglobal.jst.go.jp/public/201302291912945730
  • シロイヌナズナのMunc13オルソログPATROL1はH<sup>+</sup>‐ATPaseの細胞膜への輸送を媒介することにより気孔開孔を促進する, 橋本(杉本)美海, 桧垣匠, 八丈野孝, 永見綾子, 入江真理, 藤見美穂, 宮本愛, 秋田佳恵, 祢宜淳太郎, 白須賢, 馳澤盛一郎, 射場厚, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 54th, 335, 2013/03, http://jglobal.jst.go.jp/public/201302209212397459
  • WRKY型転写因子が病害応答性MAPKに依存したROS生産に関与する, 安達広明, 石濱伸明, 吉岡美樹, 加藤有里, 八丈野孝, 白須賢, 吉岡博文, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 54th, 287, 2013/03, http://jglobal.jst.go.jp/public/201302239043720950
  • RXLRエフェクターAVR3aの宿主細胞内における免疫抑制の分子メカニズム, 八丈野孝, 白須賢, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 54th, 105, 2013/03, http://jglobal.jst.go.jp/public/201302258833394993
  • アントシアニン・キシロース転移酵素の結晶構造に基づく機能解析, 榊原圭子, 澄田智美, 八丈野孝, 菅原聡子, 瀧澤香, 寺田貴帆, 白水美香子, 白須賢, 横山茂之, 斉藤和季, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 54th, 146, 2013/03, http://jglobal.jst.go.jp/public/201302275127017313
  • 病害応答性MAPKの下流で複数のWRKY型転写因子が防御応答の制御に関与する, 安達広明, 石濱伸明, 吉岡美樹, 加藤有里, 八丈野孝, 白須賢, 吉岡博文, 日本植物病理学会報, 日本植物病理学会報, 79, 1, 44, 2013/02, 0031-9473, http://jglobal.jst.go.jp/public/201302292261799516
  • Munc13類似タンパク,PATROL1によるH<sup>+</sup>‐ATPaseの細胞膜局在化制御は,植物の気孔運動と成長に影響を与える, 橋本(杉本)美海, 桧垣匠, 八丈野孝, 秋田佳恵, 祢宜淳太郎, 白須賢, 馳澤盛一郎, 射場厚, 日本分子生物学会年会プログラム・要旨集(Web), 日本分子生物学会年会プログラム・要旨集(Web), 36th, 1P-0400 (WEB ONLY), 2013, http://jglobal.jst.go.jp/public/201402283812851784
  • 酵母から動植物まで包括するユビキチン‐プロテアソーム系の新展開 植物のU‐box型ユビキチンリガーゼ, 八丈野孝, 白須賢, 生化学, 生化学, 84, 6, 425, 431, 2012/06, 0037-1017, http://jglobal.jst.go.jp/public/201202229784098910
  • 新規WRKY型転写因子のMAPKに依存した細胞死誘導への関与, 安達広明, 石濱伸明, 加藤有里, 八丈野孝, 白須賢, 吉岡博文, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2012, 84, 2012/03, http://jglobal.jst.go.jp/public/201202276896938820
  • ジャガイモ疫病菌が分泌するエフェクターAVR3aの病原性機能には脂質との結合が必要である, 八丈野孝, LI H, CHAPARRO‐GARCIA Angela, SCHORNACK Sebastian, 小柴生造, 渡部暁, 木川隆則, KAMOUN Sophien, 白須賢, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2012, 90, 2012/03, http://jglobal.jst.go.jp/public/201202291447058920
  • ジャガイモ疫病菌が分泌するRXLRエフェクターAVR3aの病原性機能にはホスファチジルイノシトールリン酸との結合が必要である, 八丈野孝, 李華, CHAPARRO‐GARCIA Angela, SCHORNACK Sebastian, 小柴生造, 渡部暁, 木川隆則, KAMOUN Sophien, 白須賢, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 53rd, 149, 2012/03, http://jglobal.jst.go.jp/public/201202215360831373
  • TAAとYUCによるインドール‐3‐酢酸の生合成, 増口潔, 田中慧太, 酒井達也, 菅原聡子, 夏目雅裕, 川出洋, 花田篤志, 八丈野孝, 白須賢, YAO Hong, MCSTEEN Paula, ZHAO Yunde, 林謙一郎, 神谷勇治, 笠原博幸, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 53rd, 157, 2012/03, http://jglobal.jst.go.jp/public/201202227292190303
  • 病害応答性MAPKに依存した細胞死を制御する新規WRKY型転写因子の単離, 安達広明, 石濱伸明, 加藤有里, 八丈野孝, 白須賢, 吉岡博文, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 53rd, 150, 2012/03, http://jglobal.jst.go.jp/public/201202258512257229
  • ジャガイモ疫病菌エフェクターAVR3aの立体構造および機能解析, 八丈野孝, 門田康弘, 瀧澤香, LI H, 大沢登, 半田徳子, 寺田貴帆, 小柴生造, 白水美香子, 渡部暁, 木川隆則, 横山茂之, KAMOUN Sophien, 白須賢, 日本植物病理学会大会プログラム・講演要旨予稿集, 日本植物病理学会大会プログラム・講演要旨予稿集, 2011, 56, 2011/03, http://jglobal.jst.go.jp/public/201102271147406618
  • Plant immunity and pathogen infection strategies, Takashi Yaeno, Shirasu Ken, Cell technology, Cell technology, 30, 2, 155, 160, 2011, 0287-3796, http://id.ndl.go.jp/bib/10986680
  • Structural and functional analysis of <i>Phytophthora infestans</i> effector AVR3a, Yaeno Takashi, Watanabe Satoru, Kigawa Takanori, Yokoyama Shigeyuki, Kamoun Sophien, Shirasu Ken, Kadota Yasuhiro, Takizawa Kaori, Li Hua, Ohsawa Noboru, Handa Noriko, Terada Takaho, Koshiba Seizo, Shirouzu Mikako, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2011, 0, 294, 294, 2011, 10.14841/jspp.2011.0.0294.0, http://jglobal.jst.go.jp/public/201102211441589337, Pathogens deliver a number of effector proteins into plant cells to suppress PAMP (pathogen-associated molecular pattern)-triggered immunity (PTI). Resistant plants are able to recognize the effectors by the resistance (R) proteins and induce strong immune responses. AVR3a, an effector protein secreted from potato blight pathogen <i>Phytophthora infestans</i>, is translocated into plant cells and suppresses PTI induced by the recognition of INF1. However, its underlying mechanism is still unclear. Because the molecular function of AVR3a is not predictable from the amino acid sequences, we performed protein structural analysis. The NMR analysis revealed that AVR3a protein has a positively charged surface area, which is important for binding a phosphatidylinositol phosphate. AVR3a with a point mutation in the area was not able to suppress INF1-induced PTI, although it was still recognized by R3a, a potato R protein. These data suggest that the binding of a phosphatidylinositol phosphate plays an important role for the virulence functions of AVR3a. We will discuss the molecular relationship between the lipid-binding area and the virulence function.
  • Structural analysis of effector proteins from plant pathogens, Yaeno Takashi, Shirouzu Mikako, Yokoyama Shigeyuki, Kigawa Takanori, Kamoun Sophien, Shirasu Ken, Li Hua, Kadota Yasuhiro, Takizawa Kaori, Ohsawa Noboru, Terada Takaho, Handa Noriko, Koshiba Seizo, Watanabe Satoru, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2010, 0, 81, 81, 2010, 10.14841/jspp.2010.0.0081.0, http://jglobal.jst.go.jp/public/201002284088494580, Pathogens deliver a number of effector proteins into plant cells to suppress immune responses. Resistant plants are able to recognize the effectors and induce strong immune responses including the oxidative burst and programmed cell death. Although many genes involved in plant-pathogen interactions have been identified, little is known about the mechanisms of effector recognition and subsequent signal transduction. Because the function of effectors is often not predictable from the amino acid sequences, it is difficult to study the mechanism of interaction between effectors and plant proteins and how effectors suppress immune responses. To elucidate the molecular basis of the interactions, we screened 261 proteins for their solubility and performed protein structural analyses. We will report the structural features of <i>Phytophthora</i>-derived effector proteins and their putative function.
  • ハイスループット無細胞タンパク質発現系を用いた病害抵抗性関連タンパク質の立体構造解析, 八丈野孝, 門田康弘, 五島美絵, 大沢登, 半田徳子, 寺田貴帆, 白水美香子, 横山茂之, 白須賢, 日本植物病理学会報, 日本植物病理学会報, 75, 3, 262, 2009/08, 0031-9473, http://jglobal.jst.go.jp/public/200902269647155791
  • High-throughput structural analysis of disease resistance proteins, Yaeno Takashi, Kadota Yasuhiro, Goto Mie, Ohsawa Noboru, Handa Noriko, Terada Takaho, Shirouzu Mikako, Yokoyama Shigeyuki, Shirasu Ken, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2009, 0, 969, 969, 2009, 10.14841/jspp.2009.0.0969.0, http://jglobal.jst.go.jp/public/200902286549578511, Pathogens dispatch numerous proteins called effector to plant cells to disturb plant defense responses. On the other hand, plants recognize the effectors and induce strong defense responses including the oxidative burst and programmed cell death. Although the genes involved in the plant-pathogen interactions have been identified, little is known about the mechanisms of the effector recognition and of the subsequent signal transduction. It is especially difficult to study the function of effectors because the amino acid sequences are not highly conserved. To elucidate the molecular basis for the mechanism of interaction between effectors and plant defense-related proteins, we study the three-dimensional structure of proteins by X-ray crystallography and NMR spectroscopy. We screened for proteins which were highly expressed and soluble by using the high-throughput cell-free protein expression system.
  • Disease Resistance against <I>Magnaporthe</I> <I>grisea</I> in Transgenic Rice Lines with Suppression of Allene Oxide Cyclase Gene or 12-oxo-Phytodienoic Acid Reductase Genes, Yara Asanori, Yaeno Takashi, Hasegawa Morifumi, Kusumi Kensuke, Seo Shigemi, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2008, 0, 941, 941, 2008, 10.14841/jspp.2008.0.0941.0, http://jglobal.jst.go.jp/public/200902217932029341, Linolenic acid (18:3) is a source for various oxidized metabolites, such as jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (OPDA), which are involved in defense responses to pathogen infection as signaling molecules. OPDA is synthesized by allene oxide cyclase (AOC), and then is converted to JA by OPDA reductase (OPR). To study roles of JA and OPDA in rice disease resistance to a blast fungus <I>Magnaporthe</I> <I>grisea</I>, we generated an OPDA/JA-deficient line (AOCRi) and a JA-deficient line (OPRWRi) with suppression of the <I>AOC</I> or <I>OPR</I> genes. The levels of the disease resistance in the AOCRi and OPRWRi lines were equal to that in wild-type plants. Furthermore, in the two lines, two pathogenesis-related genes (<I>PBZ1</I> and <I>PR1b</I>) were normally induced after inoculation with <I>M</I>. <I>grisea</I>. These results suggest that the disease resistance to <I>M</I>. <I>grisea</I> in rice is induced without any relation to JA and OPDA synthesis.
  • Plant immune responses against <i>Pseudomonas syringae</i> in <i>Arabidopsis bah1-D</i> mutant, Yaeno Takashi, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2008, 0, 966, 966, 2008, 10.14841/jspp.2008.0.0966.0, http://jglobal.jst.go.jp/public/200902286911168645, Salicylic acid (SA) plays important roles in plant immune responses. In <i>Arabidopsis</i>, two pathways are proposed for the biosynthesis of SA: the isochorismate (IC) pathway and the benzoate (BA) pathway. Concerning the IC pathway, the <i>sid2</i> mutant which is defective in IC synthase gene (<i>ICS1</i>) has been isolated. However, mutants related to the BA pathway have not been identified. To study the BA pathway in plant immune responses, we isolated the <i>bah1-D</i> mutant (<i><u>b</u>enzoic <u>a</u>cid <u>h</u>ypersensitive<u>1</u>-<u>D</u>ominant</i>) which accumulates higher amounts of SA in response to the application of BA. The <i>bah1-D</i> mutant is resistant to <i>Pseudomonas syringae</i> DC3000 and accumulates higher amount of SA. Furthermore, HR-like cell death is observed in the <i>bah1-D</i> mutant after inoculation with <i>Pst</i> DC3000. We will also report other characteristics of the <i>bah1-D</i> mutant.
  • Enhanced Resistance against <I>Magnaporthe</I> <I>grisea</I> in Transgenic Rice with Suppression of &omega;-3 Fatty Acid Desaturase Genes, Yara Asanori, Yaeno Takashi, Jean-Luc Montillet, Hasegawa Morifumi, Kusimi Kensuke, Seo Shigemi, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2007, 0, 593, 593, 2007, 10.14841/jspp.2007.0.593.0, http://jglobal.jst.go.jp/public/200902267503798563, Linoleic acid (18:2) and linolenic acid (18:3) are the sources for various oxidized metabolites, oxylipins, which are crucial for the induction of pathogen defense responses in plants. We show that 18:2-derived oxylipins play an important role in resistance to a phytopathogenic fungus, <I>Magnaporthe</I> <I>grisea</I>, in rice. We generated 18:2-accumulating transgenic rice plants (F78Ri) using RNA-interference of two &omega;-3 fatty acid desaturases, OsFAD7 and OsFAD8, which desaturate 18:2 to 18:3. The F78Ri plants exhibited enhanced resistance to <I>M</I>. <I>grisea</I> in a non-race-specific manner. 18:2-derived hydroperoxides and hydroxides (HPODEs and HODEs, respectively) inhibited <I>in</I> <I>vitro</I> growth of <I>M</I>. <I>grisea</I> more strongly than their respective 18:3-derived counterparts. In F78Ri plants, the endogenous levels of HPODEs and HODEs increased significantly, compared with wild-type plants. These results indicate that, in F78Ri plants, the increased accumulation of HPODEs and HODEs results in elevated antifungal activity against <I>M</I>. <I>grisea</I>, and therefore enhanced disease resistance.
  • Analysis of Plant Immune Responses in <i>bah1</i> Mutant, Yaeno Takashi, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2007, 0, 935, 935, 2007, 10.14841/jspp.2007.0.935.0, http://jglobal.jst.go.jp/public/200902298200365764, Salicylic acid (SA) plays important roles both in the hypersensitive response and in the systemic acquired response (SAR). Two pathways are proposed for the biosynthesis of SA in Arabidopsis: the benzoic acid (BA) pathway and the isochorismate pathway. In the latter, a mutant defective in isochorismate synthase has been isolated and this mutant is known to be involved in SAR. However, mutants related to the former pathway have not been identified. To study the BA pathway in plant immune responses, we isolated the BA-sensitive mutant <i>bah1</i> (<i><u>b</u>enzoic <u>a</u>cid <u>h</u>ypersensitive <u>1</u></i>). The <i>bah1</i> mutant accumulated high levels of SA and expressed the <i>PR1</i> gene after the application of BA, suggesting that the BA pathway for SA biosynthesis is activated in the <i>bah1</i> mutant. Moreover, the <i>bah1</i> mutant was resistant to <i>Pseudomonas syringae</i>.
  • <I>spl</I> (<U>sp</U>otted <U>l</U>eaf) mutations alter the levels of H<SUB>2</SUB>O<SUB>2</SUB> generation in rice, Kojo Kaori, Yaeno Takashi, Matsumura Hideo, Fujisawa Shizuko, Terauchi Ryohei, Kusumi Kensuke, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2006, 0, 769, 769, 2006, 10.14841/jspp.2006.0.769.0, http://jglobal.jst.go.jp/public/200902228580266560, Rapid accumulation of reactive oxygen intermediates (e.g., H<SUB>2</SUB>O<SUB>2</SUB>) is a striking early event in the hypersensitive response including programmed cell death. Signaling pathways leading to these responses, however, remain to be dissolved. To elucidate the signaling pathways, eleven rice lesion mimic mutants <I>spl</I> (<I>spl1</I>-<I>11</I>) with spontaneous cell death on their leaves, were investigated using suspension-cultured cell system. Three of the mutants (<I>spl2</I>, <I>spl7</I>, <I>spl11</I>) were found to accumulate higher amount of H<SUB>2</SUB>O<SUB>2</SUB> than the wild type, when treated with elicitor, indicating that these mutations are involved in accumulation of H<SUB>2</SUB>O<SUB>2</SUB>. Among three mutants, only <I>spl7</I> mutant accumulated higher amounts of H<SUB>2</SUB>O<SUB>2</SUB> than the wild type, when treated with calyculin A (CA), an inhibitor of protein phosphatase. Furthermore, <I>spl2</I> mutant plant exhibited accelerated accumulation of H<SUB>2</SUB>O<SUB>2</SUB> in response to wounding. We discuss the possible roles of these <I>spl</I> mutations in H<SUB>2</SUB>O<SUB>2</SUB> generation.
  • Disease resistance against Magnaporthe grisea in transgenic rice with suppression of plastid &omega;-3 fatty acid desaturase genes, Yara Asanori, Hattori Yasuyuki, Yaeno Takashi, Hasegawa Morifumi, Seo Shigemi, Kusumi Kensuke, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2006, 0, 763, 763, 2006, 10.14841/jspp.2006.0.763.0, http://jglobal.jst.go.jp/public/200902248751782342, Jasmonic acid (JA) plays an important role as a signaling molecule in plant defense responses to wound stress and pathogen infection. Although there are various JA-inducible pathogenesis-related (PR) genes in rice, JA does not enhance the disease resistance against rice blast fungus <I>Magnaporthe</I> <I>grisea</I>. To resolve this discrepancy, we generated and analyzed JA-deficient rice plants (F7Ri) with co-suppression of both two intrinsic plastidial &omega;-3 fatty acid desaturases, OsFAD7-1 and OsFAD7-2, that supply the JA precursor linolenic acid. Unexpectedly, in F7Ri plants, the disease resistance against <I>M</I>. <I>grisea</I> was enhanced in a non-race-specific manner. Furthermore, the enhanced resistance in F7Ri was not restored by the methyl-jasmonate treatment. These results suggest that JA is not an effective regulator of the fungal resistance. Moreover, this study provides a novel insight that the oxidized derivatives of polyunsatulated fatty acids may be involved in rice-specific fungal resistance.
  • <I>bah1</I>: a salicylic acid biosynthesis-related mutant?, Yaeno Takashi, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2006, 0, 224, 224, 2006, 10.14841/jspp.2006.0.224.0, http://jglobal.jst.go.jp/public/200902280715798543, Salicylic acid (SA) is an important signal molecule in plant disease resistance. The benzoic acid (BA) pathway for the biosynthesis of SA has been proposed. However, genes involved in the BA pathway are not known. We reported that <I>bah1</I> (<I>benzoic acid hypersensitive 1</I>) mutant involved in the BA pathway was isolated (Yaeno et al., PCP 46: Suppl. S125, 2005). <I>bah1</I> mutant showed an inhibited growth and enhanced expression of SA-inducible <I>PR1</I> gene in the presence of BA. Furthermore, the accumulation of SA occurred in <I>bah1</I> mutant by application of BA. cDNA microarray analysis showed enhanced expression of defense-related genes and several P450 genes, candidates for the gene encoding an enzyme converting BA to SA.
  • Construction of transgenic rice with reduced level of 12-oxo-phytodienoic acid, Hattori Yasuyuki, Yara Asanori, Yaeno Takashi, Hasegawa Morihumi, Kusumi Kensuke, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2006, 0, 766, 766, 2006, 10.14841/jspp.2006.0.766.0, http://jglobal.jst.go.jp/public/200902284824336784, Jasmonic acid (JA) is known to be an important signaling molecule in defense responses against pathogen attack. JA is synthesized in the octadecanoid pathway, which employs several enzymes including allene oxide cyclase (AOC) and 12-oxo-phytodienoic acid (OPDA) reductase (OPR). Recent studies in <I>Arabidopsis</I> suggest that OPDA, an intermediate in the biosynthesis of JA, is also involved in defense responses. However, little is known about physiological roles of OPDA in defense responses in rice. We generated transgenic rice plants in which the expression of the genes encoding AOC and OPR (<I>OsAOC</I>, <I>OsOPR1</I> and <I>OsOPR3</I>) is suppressed by RNAi method. JA content was undetectable in leaves of the <I>OsAOC</I>-suppressed transformant, and was reduced by approximately 3% in leaves of the <I>OsOPR1</I>-<I>OsOPR3</I>-co-suppressed transformant. We will also report the OPDA content in the <I>OsAOC</I>-suppressed rice.
  • Lipid signal molecules in plant immune responses, Yaeno Takashi, Iba Koh, Regulation of Plant Growth & Development, The Japanese Society for Chemical Regulation of Plants, Regulation of Plant Growth & Development, 41, 2, 150, 155, 2006, 1346-5406, 10.18978/jscrp.41.2_150, http://id.ndl.go.jp/bib/8626436
  • Construction of transgenic rice plants in which the expression of jasmonic acid biosynthesis genes is suppressed by RNA interference method, Hattori Yasuyuki, Yara Asanori, Yaeno Takashi, Hasegawa Morifumi, Kusumi Kensuke, Iba koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2005, 0, 388, 388, 2005, 10.14841/jspp.2005.0.388.0, http://jglobal.jst.go.jp/public/200902203264893356, Jasmonic acid (JA) is known to be an important signaling molecule in defense response against wounding. JA is synthesized in the octadecanoid pathway, which employs several enzymes including allene oxide synthase (AOS), allene oxide cyclase (AOC), and 12-oxo-phytodienoic acid reductase (OPR). We generated transgenic rice plants in which the expression of the genes encoding AOS, AOC, and OPR (<I>OsAOS</I>, <I>OsAOC</I>, <I>OsOPR1</I> and <I>OsOPR3</I> ) is suppressed by RNAi method. JA content in leaves of the <I>OsAOS</I>-suppressed transformant was reduced approximately 62% of the wild-type level. JA content was undetectable in leaves of the <I>OsAOC</I>-suppressed transformant. JA content in leaves of the <I>OsOPR1</I>-and <I>OsOPR3</I>-co-suppressed transformant was reduced approximately 3% of the wild-type level. These materials will provide a useful tool to elucidate the functions of the intermediates (e.g., 12-oxo-phytodienoic acid) of the octadecanoid pathway in rice defense responses.
  • Effects of <I>spl</I> (<U>sp</U>otted <U>l</U>eaf) mutations on H<SUB>2</SUB>O<SUB>2</SUB> production in rice, Kojo Kaori, Yaeno Takashi, Matsumura Hideo, Fujisawa Shizuko, Terauchi Ryohei, Kusumi Kensuke, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2005, 0, 407, 407, 2005, 10.14841/jspp.2005.0.407.0, http://jglobal.jst.go.jp/public/200902238069008435, Rapid accumulation of reactive oxygen intermediates (e.g., H<SUB>2</SUB>O<SUB>2</SUB>) is a striking early event in the hypersensitive response including programmed cell death. Signalling pathways leading to these responses, however, remaine to be dissolved. To elucudate the signaling pathways, eleven rice lesion mimic mutants <I>spl</I> (<I>spl1~11</I>) with spontaneous cell death on their leaves, were investigated using suspension-cultured cell. Three of the mutants (<I>spl2</I>, <I>spl7</I>, <I>spl11</I>) were found to accumulate higher amount of H<SUB>2</SUB>O<SUB>2</SUB> than the wild type, when treated with elicitor, indicating that these mutations are involved in accumulation of H<SUB>2</SUB>O<SUB>2</SUB>. Calyculin A (CA), an inhibitor of protein phosphatase, enhanced production of H<SUB>2</SUB>O<SUB>2</SUB> in <I>spl7</I> but not in the wild type, <I>spl2</I> and <I>spl11</I>. Moreover, CA-enhanced H<SUB>2</SUB>O<SUB>2</SUB> production in <I>spl7</I> was reduced by addition of a Ca<SUP>2+</SUP> chelator EGTA. These results imply that <I>spl7</I> participates in regulation of H<SUB>2</SUB>O<SUB>2</SUB> production at a protein dephosphorylate- and Ca<SUP>2+</SUP> - dependent step.
  • Characterization of jasmonic acid-reduced transgenic rice, Yara Asanori, Hattori Yasuyuki, Yaeno Takashi, Hasegawa Morifumi, Seo Shigemi, Kusumi Kensuke, Iba koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2005, 0, 390, 390, 2005, 10.14841/jspp.2005.0.390.0, http://jglobal.jst.go.jp/public/200902246991003119, Plants respond to insect attack and pathogen by activating the expression of genes involved in disease resistance. In rice, jasmonic acid (JA) is assumed to play an important role as a signaling molecule in defense responses. The synthesis of linolenic acid (LA), the precursor of JA, is catalyzed by two plastidial &omega;-3 fatty acid desaturases which are encoded by two genes, <I>FAD7-1</I> and <I>FAD7-2</I>. To determine the role of JA, we generated transgenic rice in which the expression of both <I>FAD7-1</I> and <I>FAD7-2</I> is suppressed by RNAi method. LA content in leaves of the <I>FAD</I>-suppressed transformant (F7Ri) was reduced to approximately 13% of the wild-type level. Wound-induced JA accumulation of the F7Ri was reduced to approximately 10% of the wild-type level. These results indicate that F7Ri line is a useful tool for studying the role of JA in rice.
  • Characterization of <I>benzoic acid hypersensitive 1</I> mutant, Yaeno Takashi, Kojo Kaori, Yara Asanori, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2005, 0, 406, 406, 2005, 10.14841/jspp.2005.0.406.0, http://jglobal.jst.go.jp/public/200902261233238821, Salicylic acid (SA) is an important signal molecule in plant disease resistance. Two pathways for the biosynthesis of SA are proposed: the isochorismate pathway and the benzoic acid (BA) pathway. In the former, <I>ICS1</I> gene encoding isochorismate synthase has been identified. However, genes involved in the latter pathway are not known. To study the BA pathway for SA biosynthesis, mutant screening was performed. The growth of wild-type is inhibited in the presence of SA. On the other hand, BA has no such inhibitory effect. Based on this property, we isolated <I><U>b</U>enzoic <U>a</U>cid <U>h</U>ypersensitive</I> (<I>bah</I>) <I>1</I> mutant that exhibit an inhibited growth in the presence of BA. <I>bah1</I> grew normally in the absence of BA. The transcript of SA-inducible <I>PR1</I> gene accumulated in <I>bah1</I> in the presence of BA. These results raise a possibility that the accumulation of SA occurs in <I>bah1</I> by application of BA.
  • イネ疑似病斑形成spl(spotted leaf)変異体を用いた活性酸素生成機構の解析, 小城香織, 八丈野孝, 松村英生, 藤沢志津子, 寺内良平, 楠見健介, 射場厚, 日本分子生物学会年会プログラム・講演要旨集, 日本分子生物学会年会プログラム・講演要旨集, 27th, 971, 2004/11, http://jglobal.jst.go.jp/public/200902208629683820
  • The Construction Of Transgenic Rice With A Reduced Level Of Jasmonic Acid, Yara Asanori, Yaeno Takashi, Seo Shigemi, Kusumi Kensuke, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2004, 0, 563, 563, 2004, 10.14841/jspp.2004.0.563.0, http://jglobal.jst.go.jp/public/200902200341886652, In rice, the physiological role of jasmonic acid (JA), which is assumed to play an important role as a signal molecule in defense responses to insect herbivory in dicotyledonous plants, has remained unclear. The synthesis of linolenic acid (LA), the precursor of JA, in rice is catalyzed by two plastidial &omega;-3 fatty acid desaturases encoded by two genes, <I>FAD7-1</I> and <I>FAD7-2</I>. To determine the role of JA, we generated transgenic rice in which the expression of both <I>FAD7-1</I> and <I>FAD7-2</I> is suppressed by RNA interference method. LA content in leaves of the <I>FAD</I>-suppressed transformant (F7Ri) was reduced to approximately 13% of the wild-type level. The wound induction of a wound- and JA-responsive gene, <I>JAmyb</I>, was strongly suppressed in F7Ri. From these results, it was inferred that the reduction of LA content in F7Ri affected the wound-induced JA biosynthesis and hence the wound induction of <I>JAmyb</I>.
  • Characterization of rice plants expressing a bacterial salicylate hidroxylase gene (<I>nahG</I>), Kusumi Kensuke, Hirokawa Daishiro, Yaeno Takashi, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2004, 0, 564, 564, 2004, 10.14841/jspp.2004.0.564.0, http://jglobal.jst.go.jp/public/200902260590618989, Salicylic acid (SA) is an essential component responsible for disease resistance in some dicotyledonous plants. Increase in SA level is required for induction of systemic acquired resistance in these plants. Rice has the extremely higher levels of SA relative to the dicotyledonous plants, and SA levels does not increase after pathogen infection, suggesting that the role of SA in rice differ from that in dicotyledonous plants. In this study, we characterized transgenic rice plants that express the bacterial <I>nahG</I> gene encoding salicylate hidroxylase, the enzyme that degrades SA. <I>nahG</I>-expressed rice seedlings showed delayed development phenotype, and developed lesions in their leaves without pathogen infection under high-light conditions. In such <I>nahG</I> plants, glutathione pool size decreased and the redox state of glutathione were reduced. These results suggest that the SA in rice is required for maintaining defense mechanism against oxidative damages caused by high-light stress.
  • Activation of NADPH Oxidase by Linolenic Acid Derived from Chloroplast Lipids, Yaeno Takashi, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2004, 0, 631, 631, 2004, 10.14841/jspp.2004.0.631.0, http://jglobal.jst.go.jp/public/200902279509949545, Pathogen invasion of plants induces a transient production of reactive oxygen species (e.g., O<sub>2</sub><sup>-</sup>, H<sub>2</sub>O<sub>2</sub>). O<sub>2</sub><sup>-</sup> generation is catalyzed by NADPH oxidase. Molecular mechanism underlying activation of NADPH oxidase remains unclear. As reported previously (Yaeno <i>et al</i>. (2003) <i>Plant Cell Physiol</i>. 44: suppl, s149), &alpha;-linolenic acid (LA), the most abundant trienoic fatty acids (TAs) in the chloroplast membrane lipids, is involved in the activation of NADPH oxidase. In <i>Arabidopsis</i> wild-type leaves inoculated with <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 (<i>avrRpm1</i>), the levels of free LA increased coincident with H<sub>2</sub>O<sub>2</sub> accumulation. Further, the LA levels of extrachloroplast membrane phospholipids increased substantially. This increase was accompanied by the transfer of hexadecatrienoic acid, a TA species usually acylated in chloroplast galactolipids, to extrachloroplast phospholipids. These results suggest that LA liberated from chloroplast membrane lipids is utilized for the activation of NADPH oxidase which is localized in the plasma membrane.
  • Elicitor-Induced Responses in Rice Lesion Mimic Mutants <I>spl</I>, Kojo Kaori, Yaeno Takashi, Matsumura Hideo, Fujisawa Shizuko, Terauchi Ryohei, Kusumi Kensuke, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2004, 0, 565, 565, 2004, 10.14841/jspp.2004.0.565.0, http://jglobal.jst.go.jp/public/200902297466192060, Cell death is the most striking event during the hypersensitive responses (HR), that are characterized by recognition of elicitor and transient burst of reactive oxygen species (ROS, e.g., H2O2). To investigate the mechanisms leading to cell death, rice lesion mimic mutants <I>spl</I> (<U>sp</U>otted <U>l</U>eaf), that cause aberrant regulation of cell death, were analyzed. H2O2 accumulation and degree of cell death were compared between the <I>spl</I> lines and wild type (TC65) using suspension-cultured cells treated with elicitor of rice blast fungus, <I>Magnaporthe grisea</I>. Cell death was enhanced in <I>spl3</I> but not in <I>spl7</I> and <I>spl11</I>. However, increased accumulation of H2O2 occurred in <I>spl7</I> and <I>spl11</I> but not in <I>spl3</I>. These results suggest that the mutated gene of <I>spl3</I> is responsible for execution of cell death, and that the genes of <I>spl7</I> and <I>spl11</I> are involved in accumulation of H2O2.
  • &omega;-3 Fatty Acid Desaturase Genes In Rice, Yara Asanori, Yaeno Takashi, Kusumi Kensuke, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2003, 0, 495, 495, 2003, 10.14841/jspp.2003.0.495.0, &omega;-3 fatty acid desaturase, which catalyzes the synthesis of trienoic fatty acids, is assumed to play an important role in plant adaptation to environmental stresses. In this study, two novel rice &omega;-3 desaturase genes (<I>OsFAD7-1</I> and <I>OsFAD7-2</I>), with an extensive sequence similarity to the chloroplast-localized <I>Arabidopsis</I> &omega;-3 desaturase (<I>AtFAD7</I>), were characterized. The deduced amino acid sequences of OsFAD7-1 and OsFAD7-2 were 73% and 78% identical to that of AtFAD7, respectively. The N-termini of these genes contained a putative chloroplast transit peptide. RT-PCR analysis showed that their mRNAs highly accumulated in the leaf tissues. These observations suggest that these two genes encode the chloroplast-localized &omega;-3 desaturase. To clarify the physiological role of OsFAD7-1 and OsFAD7-2, transgenic rice plants, in which the corresponding intrinsic &omega;-3 desaturases are silenced by RNAi technique, were created. We have obtained several transgenic lines with reduced levels of TAs.
  • Linolenic acid and oxidative burst in higher plant, Yaeno Takashi, Iba Koh, Plant and Cell Physiology Supplement, The Japanese Society of Plant Physiologists, Plant and Cell Physiology Supplement, 2003, 0, 498, 498, 2003, 10.14841/jspp.2003.0.498.0, Pathogen invasion of plants induces a transient production of reactive oxygen species (e.g., superoxide) in the oxidative burst. Superoxide generation is probably catalyzed by NADPH oxidase. Animal NADPH oxidase is well characterized, but the molecular mechanism underlying activation of NADPH oxidase in plants remains unclear. Trienoic fatty acids (TAs) are the major polyunsaturated fatty acid in the membrane lipids in plant cells. TAs are crucial for adaptation to abiotic stresses, especially to low- or high-temperature stress. We report that &alpha;-linolenic acid (LA), the most abundant TA species in the chloroplast membrane lipids, is critical for generation of superoxide. Impairment of LA synthesis in the chloroplast membranes impaired superoxide accumulation in the oxidative burst, leading to reduced resistance to avirulent bacterial pathogens. LA was the most effective fatty acid for stimulating NADPH oxidase activity <i>in vitro</i>.
  • ベンケイソウ型酸代謝の内在性リズムと概日時計に対する温度の影響, 荒田博行, 中村俊博, 吉武春樹, 吉松孝宏, 八丈野孝, 射場厚, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 42nd, 216, 2002/03, http://jglobal.jst.go.jp/public/200902168177610968
  • オゾンガス処理によるシロイヌナズナ葉緑体局在型ω‐3脂肪酸不飽和化酵素遺伝子(FAD7)の発現解析, 八丈野孝, 射場厚, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 41st, 217, 2001/03, http://jglobal.jst.go.jp/public/200902170526363846
  • シロイヌナズナω‐3脂肪酸不飽和化酵素遺伝子(FAD7/8)の発現に及ぼすオゾンの影響, 八丈野孝, 松田修, 射場厚, 日本植物生理学会年会要旨集, 日本植物生理学会年会要旨集, 39th, 207, 1999/03, http://jglobal.jst.go.jp/public/200902192737104468
  • ω‐3脂肪酸不飽和化酵素遺伝子(FAD7/8)のオゾンによる発現誘導の経時的変化, 八丈野孝, 松田修, 射場厚, 日本植物学会大会研究発表記録, 日本植物学会大会研究発表記録, 63rd, 174, 1999, http://jglobal.jst.go.jp/public/200902184149702631

Other Research Activities

Awards & Honors

  • 2007

Research Grants & Projects

  • Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Analysis of virulence functions of filamentous pathogen-secreting effectors
  • Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B), Unknown protein modifications by the effector and the immunosuppression, YAENO Takashi, Potato late blight (Phytophthora infestans), a causal pathogen of the Irish potato famine in the 19th century, is still serious disease in the world today. P. infestans secretes and injects a virulence protein AVR3a into host cells and suppress the host immune responses. AVR3a targets the host ubiquitin E3 ligase and inhibit its function by adding some sort of modification. In this study, I found the amino acid residue to be modified and the substance of the modification.

Activity track record

Educational activities

Course in charge

  • 2019, the first semester, under graduate, 生物学入門
  • 2019, the first semester, under graduate, 農学入門
  • 2019, the first semester, under graduate, 生物学入門
  • 2019, the first semester, under graduate, 農学入門
  • 2019, the first semester, under graduate, 植物保護学
  • 2019, the first semester, under graduate, 特別講義
  • 2019, the first semester, under graduate, 農場実習Ⅰ
  • 2019, the first semester, master course, 植物病理学特論


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.