Graduate School of Science and Engineering(Science)
理工学専攻(数理科学)
日本語
English
Update date:2025/01/07
Professor
Hirano Miki
Job Achievement
理工学研究科長(理学部長)
その他
2020/04/01-2021/03/31
データサイエンスセンター長
その他
2020/04/01-2022/03/31
データサイエンスセンター長
その他
2022/04/01-2024/03/31
Research History
2015/04-2021/03
Ehime University
Faculty of Science
Dean
2020/04-present
Ehime University
Center for Data Science
Director
2024/04-present
Ehime University
副学長
2024/04-present
Ehime University
デジタル情報人材育成機構
副機構長
Education
Keio University
1989/04
1993/03
The University of Tokyo
1993/04
1998/03
Keio University
1993
The University of Tokyo
1998
Degree
修士(数理科学)
東京大学
1995/03
博士(数理科学)
東京大学
1998/03
Research Areas
Research Projects
次数2の非正則ジーゲル保型形式に対するフーリエ・ヤコビ展開の研究
若手研究(B)
Principal investigator
次数2のジーゲル保型形式に対するフーリエ・ヤコビ展開の定式化の研究
若手研究(B)
Principal investigator
Study of Fourier-Jacobi expansions for Siegel modular forms of degree two and associated special functions
若手研究(B)
Principal investigator
Study of Fourier-Jacobi type spherical functions for Siegel modular forms of degree two and its application
若手研究(B)
Principal investigator
Study of Fourier-Jacobi type spherical functions for Siegel modular forms of degree two and its application
基盤研究(C)
Principal investigator
View details...
Papers
Archimedean zeta integrals for GL(3) × GL(2)
2022/06
Miki Hirano Taku Ishii Tadashi Miyazaki
Memoirs of the American Mathematical Society
278/ 1366, 1-136
URL
URL_2
In this article, we give explicit formulas of archimedean Whittaker functions on $GL(3)$ and $GL(2)$. Moreover, we apply those to the calculation of archimedean zeta integrals for $GL(3)\times GL(2)$, and show that the zeta integral for appropriate Whittaker functions is equal to the associated $L$-factors.
RAMANUJAN CAYLEY GRAPHS OF FROBENIUS GROUPS
2016/12
Miki Hirano Kohei Katata Yoshinori Yamasaki
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY
94/ 3, 373-383
10.1017/S0004972716000587
URL
URL_2
CAMBRIDGE UNIV PRESS
We determine a bound for the valency in a family of dihedrants of twice odd prime orders which guarantees that the Cayley graphs are Ramanujan graphs. We take two families of Cayley graphs with the underlying dihedral group of order 2p: one is the family of all Cayley graphs and the other is the family of normal ones. In the normal case, which is easier, we discuss the problem for a wider class of groups, the Frobenius groups. The result for the family of all Cayley graphs is similar to that for circulants: the prime p is 'exceptional' if and only if it is represented by one of six specific quadratic polynomials.
The archimedean zeta integrals for GL(3) x GL(2)
2016/02
Miki Hirano Taku Ishii Tadashi Miyazaki
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES
92/ 2, 27-32
Research paper (scientific journal)
10.3792/pjaa.92.27
URL
JAPAN ACAD
We consider here the archimedean zeta integrals for GL(3) x GL(2) and show that the zeta integral for appropriate Whittaker functions is equal to the associated L-factor.
Ramanujan circulant graphs and the conjecture of Hardy-Littlewood and Bateman-Horn
2016
Miki Hirano Kohei Katata Yoshinori Yamasaki
Preprint
arXiv:1310.2130
(MISC) Institution technical report and pre-print, etc.
URL
In this paper, we determine the bound of the valency of the odd circulant graph which guarantees to be a Ramanujan graph for each fixed number of vertices. In almost of the cases, the bound coincides with the trivial bound, which comes from the trivial estimate of the largest non-trivial eigenvalue of the circulant graph. As exceptional cases, the bound in fact exceeds the trivial one by two. We then prove that such exceptionals occur only in the cases where the number of vertices has at most two prime factors and is represented by a quadratic polynomial in a finite family and, moreover, under the conjecture of Hardy-Littlewood and Bateman-Horn, exist infinitely many.
無限素点における $GL(3)\times GL(2)$ に関する局所ゼータ積分 (モジュラー形式と保型表現)
2015/11
平野 幹 石井 卓 宮崎 直
数理解析研究所講究録
1973
京都大学
View details...
Presentations
Whittaker functions on GL(4,R) and archimedean Bump-Friedberg integrals
Zeta functions in Okinawa 2024
2024/11/09
Oral presentation(general)
Whittaker functions on GL(4,R) and archimedean Bump-Friedberg integrals
新潟代数セミナー
2024/07/26
Oral presentation(general)
Whittaker functions on GL(4,R) and archimedean zeta integrals
RIMS conference "Automorphic form, automorphic L-functions and related topics"
2022/01/25
Remarks on Ramanujan circulants and dihedrants
香川セミナー
2018/05/26
Ramanujan Cayley graphs and the conjecture of Hardy-Littlewood and Bateman-Horn
概均質セミナー
2017/12/02
Oral presentation(general)
View details...
Allotted Class
2024
Introduction to Mathematics
2024
Introduction to Mathematics
2024
Introduction to Mathematics
2024
Introduction to Resilience Studies
2024
AlgebraⅢ
View details...
Social Activities
S.C.M.21定例会における講演
2020/09/25
愛媛経済研究会
2017/10
19th Autumn Workshop on Number Theory
2016/11/02-2016/11/06
View details...
Professional Memberships
日本数学会
View details...
Committee Memberships
2024/03-present
日本数学会
代数学分科会評議員
2022/07-present
日本数学会
教育研究資金問題検討委員会委員
2016/04-present
日本数学会
代数学分科会運営委員
2016/04-2017/03
日本数学会
中国・四国支部 代議員
2008/04-present
愛媛県高等学校教育研究会
数学部会顧問
View details...